CSDN博客

img ByronLiu

关于对数

发表于2004/6/25 11:55:00  1116人阅读

若ab=N(a>0, a≠1),則b稱為以a為底N 的對數(Logarithm),記b=㏒aN。當a=10時稱 作常用對數,而a=e時,則稱自然對數。

  16世紀末至17世紀初的時候,當時在自然科學領域(特別是天文學)的發展上經常遇到大量精密而又龐大的數值計算,於是數學家們為了尋求化簡的計算方法而發明了對數。

  德國的史提非(1487-1567)在1544年所著的《整數算術》中,寫出了兩個數列,左邊是等比數列(叫原數),右邊是一個等差數列(叫原數的代表,或稱指數,德文是Exponent ,有代表之意)。


欲求左邊任兩數的積(商),只要先求出其代表(指數)的和(差),然後再把這個和(差)對向左邊的一個原數,則此原數即為所求之積(商),可惜史提非並未作進一步探索,沒有引入對數的概念。

  納皮爾對數值計算頗有研究。他所製造的「納皮爾算籌」,化簡了乘除法運算,其原理就是用加減來代替乘除法。 他發明對數的動機是為尋求球面三角計算的簡便方法,他依據一種非常獨等的與質點運動有關的設想構造出所謂對數方 法,其核心思想表現為算術數列與幾何數列之間的聯繫。在他的《奇妙的對數表的描述》中闡明了對數原理,後人稱為 納皮爾對數,記為Nap.㏒x,它與自然對數的關係為

Nap.㏒x=107㏑(107/x)
由此可知,納皮爾對數既不是自然對數,也不是常用對數,與現今的對數有一定的距離。

  瑞士的彪奇(1552-1632)也獨立地發現了對數,可能比納皮爾較早,但發表較遲(1620)。

  英國的布里格斯在1624年創造了常用對數。

  1619年,倫敦斯彼得所著的《新對數》使對數與自然對數更接近(以e=2.71828...為底)。

  對數的發明為當時社會的發展起了重要的影響,正如科學家伽利略(1564-1642)說:「給我時間,空間和對數,我可以創造出一個宇宙」。又如十八世紀數學家拉普拉斯( 1749-1827)亦提到:「對數用縮短計算的時間來使天文學家的壽命加倍」。

  最早傳入我國的對數著作是《比例與對數》,它是由波蘭的穆尼斯(1611-1656)和我國的薛鳳祚在17世紀中葉合 編而成的。當時在lg2=0.3010中,2叫「真數」,0.3010叫做「假數」,真數與假數對列成表,故稱對數表。後來改用 「假數」為「對數」。

  我國清代的數學家戴煦(1805-1860)發展了多種的求對數的捷法,著有《對數簡法》(1845)、《續對數簡法》(1846)等。1854年,英國的數學家艾約瑟(1825-1905) 看到這些著作後,大為歎服。

  當今中學數學教科書是先講「指數」,後以反函數形式引出「對數」的概念。但在歷史上,恰恰相反,對數概念不是來自指數,因為當時尚無分指數及無理指數的明確概念。布里格斯曾向納皮爾提出用冪指數表示對數的建議。1742年 ,J.威廉(1675-1749)在給G.威廉的《對數表》所寫的前言中作出指數可定義對數。而歐拉在他的名著《無窮小 分析尋論》(1748)中明確提出對數函數是指數函數的逆函數,和現在教科書中的提法一致。

0 0

相关博文

我的热门文章

img
取 消
img