编程语言

img flashvan

偶的AS1 Matrix类

发表于2004/10/26 12:44:00  1780人阅读

这是去年五月份为偶的3d引擎写的一个类.可惜那些东西离校的时候遗失在学校工作室了.在帝国论坛上看到以前发过的, 也不知道是哪一版本. 回家猛看了一下图形学的书, 发现线代已经扔给老师了(不应该说老师,偶从来没上过线代课),呵呵。不过后面还是适应了,毕竟线代学得还可以   以后有时间一定再搞一搞3d的,最近收集了好多资料

 

 

function Matrix() {
        //构造一个二维数组
        function constructor() {
                var i;
                t = new Array();
                for (i=0; i<4; i++) {
                        t[i] = new Array();
                }
                return t;
        }
        //公有数据成员
        this.mat = constructor();
        //私有成员函数, 计算矩阵的代数余子式
        function ValueDim(a) {
                var num1, num2;
                num1 = a[0][0]*a[1][1]*a[2][2]+a[0][1]*a[1][2]*a[2][0]+a[0][2]*a[1][0]*a[2][1];
                num2 = a[0][2]*a[1][1]*a[2][0]+a[0][1]*a[1][0]*a[2][2]+a[0][0]*a[1][2]*a[2][1];
                return (num1-num2);
        }
}
//清零
Matrix.prototype.ZeroMatrix = function() {
        var i, j;
        for (i=0; i<4; i++) {
                mat[i] = new Array();
                for (j=0; j<4; j++) {
                        mat[i][j] = 0;
                }
        }
};
//单位化
Matrix.prototype.LoadIndetity = function() {
        var i;
        ZeroMatrix();
        for (i=0; i<4; i++) {
                mat[i][i] = 1;
        }
};
//旋转 m=1时,绕x轴;m=2时,绕y轴;m=3时绕z轴
Matrix.prototype.Rotate3d = function(m, theta) {
        var m1, m2;
        var c, s;
        LoadIdentity();
        mat[m-1][m-1] = 1;
        mat[3][3] = 1;
        m1 = (m%3)+1;
        m2 = (m1%3)+1;
        m1 -= 1;
        c = Math.cos(theta);
        s = Math.sin(theta);
        mat[m1][m1] = c;
        mat[m1][m2] = -s;
        mat[m2][m2] = c;
        mat[m2][m1] = s;
};
//平移变换矩阵
//参数tx,ty,tz分别表示x,y,z位移量
//         1         0         0         0
//         0         1         0         0
//         0          0         1          0
//         tx         ty         tz         1
Matrix.prototype.Translate3d = function(tx, ty, tz) {
        LoadIdentity();
        mat[0][3] = tx;
        mat[1][3] = ty;
        mat[2][3] = tz;
};
//缩放变换矩阵
//sx,sy,sz分别表示沿x,y,z方向的缩放比例
//         sx         0         0         0
//         0         sy         0         0
//         0          0         sz         0
//         0         0         0   1
Matrix.prototype.Scaled3d = function(sx, sy, sz) {
        LoadIdentity();
        mat[0][0] = sx;
        mat[1][1] = sy;
        mat[2][2] = sz;
};
//去掉矩阵平移量,和透视变换量(以后还得定义一些透视函数得用到)
//                                    0
//                                    0
//                                     0
//         0         0         0
Matrix.prototype.RotComponet = function() {
        mat[0][3] = 0;
        mat[1][3] = 0;
        mat[2][3] = 0;
        mat[3][0] = 0;
        mat[3][1] = 0;
        mat[3][2] = 0;
};
//求逆矩阵,因为这里的是齐次坐标矩阵是四维的,
//所以求代数余子式ValueDim()比较好求
//假如是要求别的什么N维的话, 那就用别的方法。
Matrix.prototype.VertDim = function(b) {
        var i, j, lin, col, i1, j1;
        var d, deta1;
        var c = new Array();
        for (i=0; i<4; i++) {
                for (j=0; j<4; j++) {
                        lin = 0;
                        col = 0;
                        for (i1=0; i1<4; i1++) {
                                if (i1 != i) {
                                        c[lin] = new Array();
                                        for (j1=0; j1<4; j1++) {
                                                if (j1 != j) {
                                                        c[lin][col] = mat[i][i];
                                                        col += 1;
                                                }
                                        }
                                        lin += 1;
                                        col = 0;
                                }
                        }
                        deta1 = ValueDim(c);
                        if ((i+j)%2 == 0) {
                                b.mat[j][i] = deta1;
                        } else {
                                b.mat[j][i] = -deta1;
                        }
                }
        }
        d = 0;
        for (i=0; i<4; i++) {
                d += mat[0][i]*b.mat[i][0];
        }
        if (d == 0) {
                return;
        }
        for (i=0; i<4; i++) {
                for (j=0; j<4; j++) {
                        b.mat[i][j] /= d;
                }
        }
};
//求两个矩阵的乘积
Matrix.prototype.Matrix4x4 = function(v1, v2) {
        var i, j, k;
        for (i=0; i<4; i++) {
                for (j=0; j<4; j++) {
                        mat[i][j] = 0;
                        for (k=0; k<4; k++) {
                                mat[i][j] += v1.mat[i][k]*v2.mat[k][j];
                        }
                }
        }
};
//复制一个矩阵
Matrix.prototype.CopyMatrix = function(v1) {
        var i, j;
        for (i=0; i<4; i++) {
                for (j=0; j<4; j++) {
                        mat[i][j] = v1.mat[i][j];
                }
        }
};
//绕空间任意轴线放置变换矩阵
//这里用到了我还没有定义的一个类CVector,它是矢量类
//从CPointer类继承的,今天晚上再搞(反的工作顺序?)
//pbeg表示任意轴线的起点
//pend表示任意轴线的终点或者就是轴线的方向向量,这要看key的取值了
//key=0时pend表示终点
//key=1时pend就表示轴线方向向量(起点为默认为原点了)
Matrix.prototype.MakeRotateAxis = function(pbeg, pend, angle, key) {
        var r = 0, spsi, cpsi;
        var i;
        p = new Cvector();
        mat1 = new Matrix();
        ma = new Matrix();
        rx = new Matrix();
        ry = new Matrix();
        rz = new Matrix();
        rx1 = new Matrix();
        ry1 = new Matrix();
        mt1 = new Matrix();
        if (key != 1) {
                p.VectorPointMinus(pend, pbeg);
                p.Norvec();
        } else {
                p.Copy(pend);
                p.Norvec();
        }
        //平移矩阵
        //         1                 0                 0                 0
        //         0                 1                 0                 0
        //         0                  0                 1                  0
        //-pbeg[0] -pbeg[1] -pbeg[2] 1
        for (i=0; i<4; i++) {
                ma.mat[i][i] = 1;
        }
        ma.mat[0][3] = -pbeg[0];
        ma.mat[1][3] = -pbeg[1];
        ma.mat[2][3] = -pbeg[2];
        //逆平移矩阵
        //         1                 0                 0                 0
        //         0                 1                 0                 0
        //         0                  0                 1                  0
        // pbeg[0] pbeg[1]  pbeg[2]  1
        for (i=0; i<4; i++) {
                mt1.mat[i][i] = 1;
        }
        mt1.mat[0][3] = pbeg[0];
        mt1.mat[1][3] = pbeg[1];
        mt1.mat[2][3] = -pbeg[2];
        //绕x轴旋转矩阵
        //         1                 0                 0                 0
        //         0          cosθ        sinθ         0
        //         0                  -sinθ        cosθ         0
        //         0                 0                 0                 1
        spsi = 0;
        cpsi = 1;
        r = Math.sqrt(p.y*py+p.z*p.z);
        if (r>=1.e-5) {
                spsi = p.y/r;
                cpsi = p.z/r;
        } else {
                r = 0;
        }
        for (i=0; i<4; i++) {
                rx.mat[i][i] = 1;
        }
        rx.mat[1][1] = cpsi;
        rx.mat[1][2] = -spsi;
        rx.mat[2][1] = spsi;
        rx.mat[2][2] = cpsi;
        //绕x轴逆旋转矩阵
        //         1                 0                 0                 0
        //         0          cosθ        -sinθ         0
        //         0                  sinθ        cosθ         0
        //         0                 0                 0                 1
        for (i=0; i<4; i++) {
                rx1.mat[i][i] = 1;
        }
        rx1.mat[1][1] = cpsi;
        rx1.mat[1][2] = spsi;
        rx1.mat[2][1] = -spsi;
        rx1.mat[2][2] = cpsi;
        //绕y轴旋转矩阵
        //         cosθ         0                 -sinθ         0
        //         0          1           0                 0
        //         sinθ        0                cosθ         0
        //         0                 0                 0                 1
        for (i=0; i<4; i++) {
                ry.mat[i][i] = 1;
        }
        spsi = -p.x;
        cpsi = r;
        ry.mat[0][0] = cpsi;
        ry.mat[0][2] = -spsi;
        ry.mat[2][0] = spsi;
        ry.mat[2][2] = cpsi;
        //绕y轴逆旋转矩阵
        //         cosθ         0                 sinθ         0
        //         0          1           0                 0
        //         -sinθ        0                cosθ         0
        //         0                 0                 0                 1
        for (i=0; i<4; i++) {
                ry1.mat[i][i] = 1;
        }
        ry1.mat[0][0] = cpsi;
        ry1.mat[0][2] = spsi;
        ry1.mat[2][0] = -spsi;
        ry1.mat[2][2] = cpsi;
        //绕z轴旋转矩阵
        //         cosθ         sinθ 0                0
        //         -sinθ cosθ 0                 0
        //         0                 0     1                0
        //         0                 0          0                1
        for (i=0; i<4; i++) {
                rz.mat[i][i] = 1;
        }
        spsi = Math.sin(angle);
        cpsi = Math.cos(angle);
        rz.mat[0][0] = cpsi;
        rz.mat[0][1] = -spsi;
        rz.mat[1][0] = spsi;
        rz.mat[1][1] = cpsi;
        //mt1=ma·rx·ry·rz·rx1·ry1·mt1
        //最后得到的结果矩阵存在mat里
        mat1.Matrix4x4(mt1, rx1);
        mt1.Matrix4x4(mat1, ry1);
        mat1.Matrix4x4(mt1, rz);
        mt1.Matrix4x4(mat1, ry);
        mat1.Matrix4x4(mt1, rx);
        mt1.Matrix4x4(mat1, ma);
        CopyMatrix(mt1);
};
//以平面任意轴线对称变换矩阵
//这是一个二维矩阵, 主要是配合我要搞的教材,要不然就不会定义这个函数了
//pbeg,pend,key代表的意义和上面旋转函数一样
//结果放在mat里.不做什么解释了
Matrix.prototype.MakeReflectaxis = function(pbeg, pend, key) {
        var r = 0, spsi, cpsi;
        var i, j;
        p = new CVector();
        mat = new Matrix();
        ma = new Matrix();
        rx = new Matrix();
        rx1 = new Matrix();
        mt1 = new Matrix();
        if (key != 1) {
                p.VectorPointMinus(pend, pbeg);
                p.Norvec();
        } else {
                p.Copy(pend);
                p.Norvec();
        }
        for (i=0; i<4; i++) {
                ma.mat[i][i] = 1;
        }
        ma.mat[0][3] = -pbeg[0];
        ma.mat[1][3] = -pbeg[1];
        ma.mat[2][3] = -pbeg[2];
        for (i=0; i<4; i++) {
                mt1.mat[i][i] = 1;
        }
        mt1.mat[0][3] = pbeg[0];
        mt1.mat[1][3] = pbeg[1];
        mt1.mat[2][3] = pbeg[2];
        spsi = 0;
        cpsi = 1;
        r = Math.sqrt(p.x*p.x+p.y*p.y);
        if (r>1.e-5) {
                spsi = p.y/r;
                cpsi = p.x/r;
        } else {
                r = 0;
        }
        for (i=0; i<4; i++) {
                rx.mat[i][i] = 1;
        }
        rx.mat[0][0] = cpsi;
        rx.mat[0][1] = spsi;
        rx.mat[1][0] = -spsi;
        rx.mat[1][1] = cpsi;
        for (i=0; i<4; i++) {
                rx1.mat[i][i] = 1;
        }
        rx1.mat[0][0] = cpsi;
        rx1.mat[0][1] = -spsi;
        rx1.mat[1][0] = spsi;
        rx1.mat[1][1] = cpsi;
        for (i=0; i<4; i++) {
                rs.mat[i][i] = 1;
        }
        rs.mat[0][0] = 1;
        rs.mat[0][1] = 0;
        rs.mat[1][0] = 0;
        rs.mat[1][1] = -1;
        mat.Matrix4x4(mt1, rx1);
        mt1.Matrix4x4(mat, rs);
        mat.Matrix4x4(mt1, rx);
        mt1.Matrix4x4(mat, ma);
        CopyMatrix(mt1);
};
阅读全文
0 0

相关文章推荐

img
取 消
img