CSDN博客

img ghj1976

VC++中的一个不足及其改善方法

发表于2001/9/24 12:36:00  1628人阅读

 

VC++中的一个不足及其改善方法

上海七○四研究所
梁柏林

---- 使用C语言编程序,有时需要把一种数值(如float类型的数值)转换成另一种类型(如int类型)的数值使用,这时,我们就要用到类型强制转换运算符,如(int)、(float)等。但是在VC++中,当把一个float类型的数值转换成int类型时,有时会出现比较大的误差。我在工作过程中就碰到过,当我把一个值为1140.00的float型变量ftemp使用如下方法转换成int类型,

	itemp=(int)ftemp;

这时,int型变量itemp的值为1139,误差1(在本文中,我称这种误差为“1误差”)。这么大的误差,我们是不能接受的。

---- 经过深入的测试研究,我发现:在VC++中,当一个float型变量初始化(从屏幕输入一值,或把一常量值赋给它)后就用以上方法转换成int类型,结果是小数部分去掉,整数部分保留,误差小于1,没有“1误差”;而当一个float型变量初始化后,又经过一些运算,再转换成int类型,就可能会有“1误差”,就是说,结果不但把小数部分去掉,整数部分也可能有改变。例如,我们把以米为单位的数据转化成以厘米为单位的数据,用float型变量f存放以米为单位的数据,用int型变量i存放以厘米为单位的数据,使用下面语句实现数据转换。

	i=(int)(f*100);
当f=11.40(米)时,i=1139(厘米);
当f=11.41(米)时,i=1140(厘米);
当f=12.32(米)时,i=1231(厘米);
当f=12.33(米)时,i=1232(厘米);
等等,很多数据的转换存在着“1误差”。
不过,大部分数据的转换是没有误差的,
如当f=11.39(米)时,i=1139(厘米);
当f=12.31(米)时,i=1231(厘米)。
如果改用以下方法实现数据转换,
“1误差”一样存在。
	float ftemp;
	ftemp=f*100;
	i=(int)ftemp;
这里,ftemp是一局部变量(函数内定义)
或全局变量(函数外定义)。把f*100改成f*100.0,
“1误差”也存在。但是如果把ftemp
改成为类的属性变量(在类里定义),
“1误差”就不存在。

---- 我还发现,“1误差”现象对正负数具有对称性。就是说,如果有“1误差”,对于正数,(int)转换后少了1;对于负数,(int)转换后多了1。如上例子中,当f=-11.40(米)时,i=-1139(厘米);当f=-11.41(米)时,i=-1140(厘米);当f=-12.32(米)时,i=-1231(厘米);当f=-12.33(米)时,i=-1232(厘米)。而且,转换误差不会大于1。

---- 针对以上分析结果,我在这里给出一个校正“1误差”的方法,以供参考。我设计了一个把float型数转换成int型数的函数,用以代替(int)运算符。函数清单如下:

int float_to_int(float f)
{
	int i;
	float ferror;
	i=(int)f;
	ferror=f-(float)i;
	if(fabs(ferror)>0.99)	//有“1误差”,校正
		if(f>0)
			i++;
		else
			i--;
	return(i);
}

---- 在此函数中,通过判断(int)类型转换前后的误差ferror是否大于0.99来判断是否有“1误差”,如果有,就进行校正。校正方法是,对于正数,把(int)转换结果加1;对于负数,把(int)转换结果减1。

---- 定义了float_to_int()函数后,用它代替(int)运算符就能校正“1误差”了。如对上面把以米为单位的数据转化成以厘米为单位的数据这一例子来说,改成

	i=float_to_int(f*100);
或
	float ftemp;
	ftemp=f*100;
	i=float_to_int(ftemp);
当f=11.40(米)时,i=1140(厘米);
当f=11.41(米)时,i=1141(厘米);
当f=12.32(米)时,i=1232(厘米);
当f=12.33(米)时,i=1233(厘米);
当f=-11.40(米)时,i=-1140(厘米);
当f=-11.41(米)时,i=-1141(厘米);
当f=-12.32(米)时,i=-1232(厘米);
当f=-12.33(米)时,i=-1233(厘米)。
“1误差”没有了。而且对原来没有
“1误差”的数据也没有影响,如当f=11.39
(米)时,i=1139(厘米)。
通过对大量的数据进行测试检查,
证明此方法是有效的。

---- 另外,对于double型转换成int型,也有类似的“1误差”问题,只是出现误差的数据比较少,而且还有偶然性(就是,对于某个数值,有时候有“1误差”,有时候又没有“1误差”)。应用类似的方法也可以把double型转换成int型的“1误差”校正过来。

阅读全文
0 0

相关文章推荐

img
取 消
img