CSDN博客

img hanlin1985

递推法

发表于2008/9/28 9:01:00  269人阅读

递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为12,…,i-1的一系列解,构造出问题规模为I的解。这样,程序可从i=0i=1出发,重复地,由已知至i-1规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。

【问题】       阶乘计算

问题描述:编写程序,对给定的nn100),计算并输出k的阶乘k!(k=12,…,n)的全部有效数字。

由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。如有m位成整数N用数组a[ ]存储:

       N=a[m]×10m-1+a[m-1]×10m-2+ +a[2]×101+a[1]×100

并用a[0]存储长整数N的位数m,即a[0]=m。按上述约定,数组的每个元素存储k的阶乘k!的一位数字,并从低位到高位依次存于数组的第二个元素、第三个元素……。例如,5=120,在数组中的存储形式为:

3

0

2

1

……

首元素3表示长整数是一个3位数,接着是低位到高位依次是021,表示成整数120

       计算阶乘k!可采用对已求得的阶乘(k-1)!连续累加k-1次后求得。例如,已知4=24,计算5!,可对原来的24累加424后得到120。细节见以下程序。

# include <stdio.h>

# include <malloc.h>

# define  MAXN   1000

void  pnext(int a[ ],int k)

{     int *b,m=a[0],i,j,r,carry;

       b=(int * ) malloc(sizeof(int)* (m+1));

       for ( i=1;i<=m;i++)        b[i]=a[i];

       for ( j=1;j<=k;j++)

       {     for ( carry=0,i=1;i<=m;i++)

              {     r=(i<a[0]?a[i]+b[i]:a[i])+carry;

                     a[i]=r%10;

                     carry=r/10;

              }

              if (carry)  a[++m]=carry;

       }

       free(b);

       a[0]=m;

}

 

void  write(int *a,int k)

{     int i;

       printf(“%4d=”,k);

       for (i=a[0];i>0;i--)

              printf(“%d”,a[i]);

printf(“/n/n”);

}

 

void main()

{     int a[MAXN],n,k;

       printf(“Enter the number n:  “);

       scanf(“%d”,&n);

       a[0]=1;

       a[1]=1;

       write(a,1);

       for (k=2;k<=n;k++)

       {     pnext(a,k);

              write(a,k);

              getchar();

       }

}

阅读全文
0 0

相关文章推荐

img
取 消
img