CSDN博客

img stanely

银行业管理变革大趋势

发表于2001/6/7 15:23:00  729人阅读

银行业管理变革大趋势


宋玉长 刘珍


编者按:

伴随网络技术日趋成熟,银行、证券、保险、税务等众多行业,都非常重视通过数据集中处理来达到强化集中管理的目的。本报4月9日刊出的探讨税务行业数据集中的文章引起读者的广泛共鸣,本期将继续关注银行业的数据集中问题。

在20世纪80年代中后期,我国银行电子化基本处于以微机的单机作业为主阶段,到了90年代中期,大型商业银行基本实现了以地级市为单位的数据集中处理,少数商业银行已经开始实施以省为单位的数据集中,有些商业银行甚至已考虑在更大范围内实现数据集中处理。因此,银行的数据集中处理已经成为新世纪银行业发展的大趋势。

数据集中的趋势与优势

数据集中管理给银行业的发展带来了许多新的挑战,同时,网络技术日趋成熟也为实现数据集中管理提供了条件,数据集中的优势体现在以下几个方面:

1.使跨地区金融交易更迅速、更可靠

目前广域网下的分布式处理系统仍存在交易不畅、可靠性差等问题,虽然网络硬件技术的发展,使这种状况大有改观,但如何保证两地数据一致性仍然没有很实用的技术解决方案。以跨地区的通存通兑为例,当办理异地储蓄存取款业务时,受理行要收取或支付现金,并在当地主机中记录与被代理行的资金清算状况,而开户行(被代理行)则要及时修正该户的储蓄余额,如一方成功,一方失败,则导致数据不一致,从而导致业务错误;此时必须通过查询操作(有的系统实现了自动查询)确认数据不一致的主机,并修正该主机相应的数据。当网络通信质量比较低时,数据不一致现象会更为严重。从目前技术状况来看,只有将数据集中处理才能保证交易的及时性和可靠性。

2.向以客户为中心经营思想转变

在市场激烈竞争的环境下,银行已经将客户服务作为经营重点,由旧系统的账务中心模式转变为客户中心模式。当今无论个人或企业,其社会化的程度日益提高,跨地区的金融服务需求不断增加,新的银行服务项目,如PC银行、家庭理财、电话银行、网上银行等,如雨后春笋般地出现。在分布式系统环境下,很难实现跨地区的客户服务,尤其是处于跨多个地区的情况下,在分布式系统下提供统一的客户服务更显得困难。以客户为中心的实现模式,要求银行将同一客户的不同账户联系起来,及时掌握客户的资金动态和流向。因此,只有数据集中处理,才能使以客户为中心的经营思想在更大范围内实现,为提高竞争力打下基础。

3.实现集中管理、降低金融风险

银行业务是根据服务种类来划分的。这种条块分割的管理模式已经不能适应企业改革的要求,更不能适应信息时代的要求。如今银行都在走集约经营道路,业务上体现为“大会计"模式,该模式从横向来看,就是打破现有的储蓄、会计、信用卡等业务的划分,形成统一的综合柜员系统;从纵向来看,就是要对银行各分支机构形成统一的管理,以达到防范金融风险,提高企业效率的目的。要想达到以上目的,数据必须实现高度集中。数据集中之后,可以有效地对分支机构的报表、客户资料以及各类数据资源进行有效的管理,同时还可以杜绝假账、假表、假数据,保证统计数据的真实性、一致性、完整性和准确性。

4.减缓对科技人员需求的压力

银行的业务处理系统总是需要一定数量的科技人员维护,一部分地区还需要相当数量的软件开发人员拓展业务,开发新的业务处理系统。在分布系统中,各级部门都要组织一定数量的科技人员做系统维护工作,人员浪费仅仅是一方面因素,更重要的是在部分地区难以具备合格的维护人员,目前从国内到国外,计算机专业人才相当匮乏,只有数据集中才能集中科技人才力量,实现人力资源最有效的利用。

5.有利于数据挖掘和分析

在传统的银行经营行为中,可供分析决策的数据比较少,如储蓄余额、资产负债状况等,分析决策数据的不足,必然导致管理者决策有一定的盲目性。而业务系统中,积累了大量历史数据,这些历史数据对经营决策有很大帮助,但由于数据量庞大,数据分析手段落后,数据又广泛分布在不同处理主机中,使这些历史数据被白白浪费掉。数据集中的下一步目标就是利用数据仓库和OLAP等相关技术,实现数据挖掘,提供决策支持。这种数据挖掘是建立在大批量历史数据基础上的,数据集中使数据分析更准确,更具有普遍性。

数据集中的问题及对策

数据集中无疑给银行业的发展带来了新机遇,但同时也带来了一些过去很少遇到的新问题:

1.主机处理能力的制约

数据集中后,无论是批量处理还是联机交易,处理量都急剧膨胀,一般一个省的日均交易量都在数十万笔上下,部分发达地区超过百万笔。国内半数以上的银行使用的是Unix开放平台,这些主机的处理能力虽然逐年提高,但与大型主机相比,其处理能力仍有很大差距,随着扩展业务(或中间业务)的急剧增加,主机负荷越来越成为问题,虽然Unix主机计算能力不断提高,最新的机器总能适应银行业务的发展,但对银行企业而言,总不能三天两头换主机,旧的投资必须在一定范围内得到保护。解决主机压力的有效办法是改造现有软件,利用中间件技术实现多机计算。

2.业务软件处理效率的制约

目前很多金融处理软件都存在着系统效率问题。虽然计算机硬件发展使软件开发人员不必过多考虑效率问题,但在关系数据库上实现的应用系统必须认真考虑计算效率。目前金融软件处理效率的不良集中表现在以下两方面:一是使用的数据库操作语言效率低下,二是系统临界资源过多。尤其是后者,与目前大型主机的处理特性背道而驰。大型主机与小型主机的重要区别是系统吞吐能力很大,这种差别是靠多进程或多线程实现的,而单进程的处理能力没有太大差别。很多金融联机交易系统有相当多的临界资源,数据集中后,交易量大增,这种不良系统出现故障的可能性就更大了,因此数据集中前,必须妥善处理应用程序的效率问题。

3.业务软件可扩充性的制约

数据集中后,如果业务处理程序同样实现合并,则程序的复杂度相应提高,造成软件的可维护性和可扩充性下降。因此在数据集中过程中,可以对软件结构做适当调整,尽量降低程序的偶合度,提高软件的可维护性。降低代码偶合度的有效办法是将数据分割为若干集合。

4.地区业务发展特性的制约

由于中间业务的迅速发展,使各地扩充了相当成分的特色业务,数据集中后,由于采用集中管理,分散管理下的技术职能部门可能被撤消,使有地区特色扩展业务的发展受到一定影响,集中程度越高,影响程度越深。而为了保持金融企业的竞争力,数据集中务必考虑中间业务的发展。

5.管理能力的制约

数据集中后影响到的管理因素有两个方面:一是运行系统的日常管理;二是业务管理模式。数据集中使应用系统的风险提高,系统故障的影响面随集中程度的提高而提高,当主机处理数据增大后,数据库系统的运行状况可能会发生巨大变化,这就要求数据中心有更强的技术维护力量,现有的技术维护力量不一定能胜任集中的需求。

数据集中带来很多优势,但发挥这些优势还依赖于管理模式,这些管理模式可能受制于传统业务处理思想,可能受制于管理部门,也可能受制于其他行业。只有管理模式集中化,打破旧的行政划分,才可能最大程度发挥数据集中的优势,否则数据集中可能失去其原有的意义。

总之,数据集中可以是简单的主机集中,也可以是深层次的数据重组。而集中本身面临很多技术问题和管理问题,要充分考虑这些问题的解决办法,保证数据集中顺利实施,并发挥数据集中的优势。

0 0

相关博文

我的热门文章

img
取 消
img