CSDN博客

img sweetna

补码

发表于2008/9/17 19:12:00  10402人阅读

3.常用数值编码

由于机器数在计算时,如果符号位和数值位同时参与运算,则可能会产生错误结果;而如果单独考虑符号问题,又会增加运算器件的实现难度。因此,为了使计算机能够方便地对数值进行各种算术逻辑运算,必须对数值型数据进行二进制编码处理。所谓编码是采用少量的基本符号(如01),按照一定的组合原则,来表示大量复杂多样的信息的技术。编码的优劣直接影响到计算机处理信息的速度。数值型数据的常用编码方法包括:原码、反码、补码。

1)原码。原码的编码规则是:符号位0表示正,1表示负,数值部分用该数绝对值的二进制数表示。当整数时,小数点隐含在最低位之后;当纯小数时,小数点隐含在符号位和数值位之间,均不占位。通常用[X]表示数X的原码。

例如,设机器字长为8位,

[+1] = 00000001         [+127] = 01111111       [+0] = 00000000

[ 1] = 10000001        [ 127] = 11111111       [ 0] = 10000000

显然,按原码的编码规则,零有两种表示形式。

原码表示法简明易懂,与其真值的转换方便,比较容易进行乘除运算。但是在进行加减运算时,原码运算很不方便。由于符号位不能和数值一样参与运算,所以要根据两数的符号情况,同号相加,异号相减,还要根据两数的绝对值大小,令大数减去小数,最后还要判断结果的符号。这样不仅要求运算器既能作加法,又能作减法,还必须附加许多条件判断的处理,最终既增加了运算器的实现复杂性,又延长了运算的时间。

2)反码。反码的编码规则是:符号位0表示正,1表示负,正数的反码等于原码,负数的反码等于原码除符号位外按位取反,即0110。通常用[X]表示数X的反码。

例如,设机器字长为8位,

[+1] = 00000001         [+127] = 01111111       [+0] = 00000000 

[ 1] = 11111110          [ 127] = 10000000     [ 0] = 11111111

显然,按反码的编码规则,零也有两种表示形式。

反码很容易由原码获得,但同样不方便运算,一般在求补码的过程中用到反码。

3)补码。补码的编码规则是:符号位0表示正,1表示负,正数的补码等于原码,负数的补码等于反码末位加1。通常用[X]表示数X的补码。

例如,设机器字长为8位,

[+1] = 00000001         [+127] = 01111111       [+0] = 00000000

[ 1] = 11111111          [ 127] = 10000001     [ 0] = 00000000

显然,按补码的编码规则,零有惟一的表示形式。

补码的概念来源于数学上的和补数。例如,将钟表的时针顺时针拨快5小时和逆时针拨慢7小时,最后指示的位置相同,则称57互为模12情况下的补数。计算机中机器数受机器字长限制,所以是有限字长的数字系统。对于整数来说,机器字长为n位(含符号位),模是2n;对于有符号纯小数来说,模是2

求补运算通常利用反码来实现。

【例】 X = +1011Y = 1101的原码、反码和补码。

    [X] = 01011                [Y] = 11101

       [X] = 01011                [Y] = 10010

       [X] = 01011                [Y] = 10011

采用补码进行加减运算十分方便。通过对负数的编码处理,允许符号位和数值一起参与运算,可以把减法运算转化为加法运算。不论求和求差,也不论操作数为正为负,运算时一律只做加法,从而大大简化运算器的设计,加快了运算速度。

例如,(9)+(5)的运算如下:

[9] = 11110111                  11110111

[5] = 11111011           +     11111011

                                      111110010

因为机器字长的限制,丢失高位1,运算结果机器数为11110010,是14的补码形式。

目前,由于计算机中最多的运算是加减运算,为了简化运算器设计,加快运算速度,有些计算机在数值表示、存储、运算时均采用补码表示法,也有些计算机,数用原码进行存储和传送,运算时采用补码,还有些计算机在进行加减法时采用补码运算,而在进行乘除法时采用原码运算。

4.精度和溢出

现代数字计算机是有限字长的数字系统,机器数表示的范围受到机器字长和数据类型的限制,一旦机器字长和数据类型确定了,机器数所能表示的数的范围和精度也就确定了。所谓精度,是指可以给出的有效数字的位数。一般来说,机器字长越长,可以表示的数的范围越大,精度越高;当字长相同时,浮点数通常比整数可以表示的数的范围要大;浮点数表示时,阶码位数越多,可以表示的数的范围越大,尾数位数越多,可以表示的数的精度越高。

如果一个数的大小超出了计算机所能表示的数的范围,则产生溢出。如果两个正数相加,结果大于机器所能表示的最大正数,称为上溢;如果两个负数相加,结果小于机器所能表示的最小负数,称为下溢。例如,字长为n位的有符号整数,最高1位为符号位,数值位为n1位,用补码表示时,数的表示范围为2n–1~2n–11,一旦运算时发生结果超出此范围的情况,就产生溢出。

0 0

相关博文

我的热门文章

img
取 消
img