### Regular Languages

1.1

A finite automata is a 5-tuple (state, alphabet, transition function, start state, set of accept states)

A language is a regular language if some finite automaton recognizes it.

Regular Operation: union, concatenation, star

1.2

DFA and NFA

Theorem:

Every non-deterministic automaton has an equivalent deterministic automaton

1.3

R is a regular expression if R is:

1.       a for some a in the alphabet

2.       ε

3.       Ø

4.       (R1R2) where R1,R2 are regular expressions

5.       (R1оR2) where R1,R2 are regular expressions

6.       R1* , R1 is a regular expression

Theorem:

A language is regular if and only if some regular expression describes it.

1.4

Pumping lemma for regular languages

If A is a regular language, then there is a number p(the pumping length), where, if s is any string in A of length at least p, then s many be divided into three pieces, s = xyz, satisfying the following conditions:

1.       for each i ³ 0 , xyiz ÎA

2.       |y| > 0

3.       |xy| £ p

0 0