CSDN博客

img yangwl

实施商业智能如何节省预算

发表于2004/6/28 10:06:00  994人阅读

分类: 商业智能技术

[媒体转载 请注明来自中国商业智能网 by 焦有章]不管是什么样的企业和组织,大型的、中型的、还是小型的,对实施商业智能如何节省预算都很感兴趣。一方面,许多大公司拼命的把1000万美元的商业智能项目压缩到500万美元的预算,这明显的是尽力压缩成本,也可能是对以前的项目失败的极端谨慎。另一方面, 有许多中小型企业无力支付100万美元的投资,然而这不意味着那些中小型企业就不能实施商业智能解决方案。不论是大型企业试图压缩预算,或者中小型企业面临复杂的问题但没有足够的财力,当提出一个成功的商业智能解决方案时,你必须找到一个方法让预算富有弹性。这篇文章将给出一些策略,这些策略能够让你的预算最佳化,以使预算能够适应商业智能解决方案。

 

不和谐的声音

对于节省预算来说,最好的商业智能体系结构可能不是你所邀请的销售商提出的产品。当然,如果你告诉他们产品不能满足你的需求,他们会推荐同类公司的需求列表,表示这些需求都符合他们的产品特性。如果你告诉他们不需要这么多的功能,销售商会提示目前你的商业智能体系结构的局限性。如果你告诉他们这些产品太贵了,他们将会告诉你投资回报率远比初始的投资重要的多。简单说来:只有包括了销售商的所有产品,才会是一个完整的商业智能方案。

但是在你开支票前,首先问自己两个重要的问题:

1、  产品的功能是不是过于强大?如果你能够使用它们提供的所有功能和特性,知名品牌的产品自然很好。如果不能,这样的产品会变成臃肿的工具,效率低下,实施和维护过于昂贵。

2、  你是不是被产品低廉的价格所吸引?价格低廉是好事,但是它必须能够满足需求。当你告诉经理你选择的抽取、转换、加载(ETL)工具为公司节省了大笔资金,他向你表达了祝贺。但是仅仅过了几个月就出现了问题,需要更多的编程工作,因为需要写大量的代码支持你的ETL(你所买的ETL工具无法胜任某些工作)。经理要问的第一件事就是:你不是已经买了一个ETL工具来做这个工作了吗?购买合适的技术是成功节省预算的关键。一些公司经常购买那些无用的或者昂贵的产品,然后感觉有了成功的保证。但是经常,传统的知名品牌的产品系列不是最有效的。不幸的是,选择便宜的解决方案可能起到更大的作用。那么什么是最好的选择?在下面的部分,我将会举例说明非传统组合的一些产品组合,以便能够节省预算。他们是真实的解决方案,无论如何,他们应该能够刺激你对非传统组合的调查,以便满足你的需求并且符合预算。

 

选择微软

微软的Microsoft Analysis Services是一款优秀的在线分析处理(OLAP)服务器。它相对于传统的olap服务器来说是价格低廉的。比如:相对于Hyperion和MicroStrategy的产品。但是微软的产品经常被人忽视,因为项目经理认为它只能在微软自己的SQL Server上才能运行。其实不是那样,当源数据来自Oracle, IBM的 DB2, 或者 NCR的Teradata时,你照样可以实现并且挖掘Microsoft Analysis Services的价值。微软的数据库结合Microsoft Analysis Services将会给你一个优秀的OLAP解决方案。对于大公司压缩预算,或者中小型企业希望获得企业级的olap,这个非传统的体系组合有效而且价格低廉。

带有SyncSort的轻量级的ETL

主要的数据库厂商激烈争论他们自己的产品的特性和可扩展性是多么与众不同,但是记住他们至少做了一些同样的事情。举个例子,他们都提供一个ETL工具,可以说是轻量级的ETL工具。数据库厂商很少关心拥有功能齐全的ETL,比如那些专门的ETL厂商Ascential Software或者Informatica的工具,他们更看重的是保持一个商业智能产品套件的完整性,数据库厂商通过价格优势和产品捆绑抢占市场份额。比如oracle把它的Warehouse Builder v. 9.2 (OWB) 绑定到网络开发套件中,如果你的公司对购买oracle企业版,那么你可能已经有了一个OWB 的license,甚至你还没有意识到你已经拥有了它。同样,微软的用户能够利用数据转换服务(DTS),它被绑定到了微软的SQL Server上。轻量级的ETL工具如果不能满足你的ETL 需求,不管怎样的廉价,它们有价值吗?简单说答案是肯定的。大量的ETL是标准的行为:简单的排序,集成,聚集和转换。许多人投资具有功能齐全的ETL工具,去实现那些廉价的OWB or DTS都能够实现的简单功能,当然有时轻量级的ETL还需要购买高性能的排序工具,比如SyncSort。通过获得专利的排序算法,I/O优化,和动态的监控,SyncSort加速了ETL事务、数据挖掘和点击流的处理,在数据仓库、数据挖掘、CRM、 ERP 和决策支持方面90%的应用都可以用它来处理。

轻量级的ETL和SyncSort的组合让你利用价格优势而又不增加工作量。轻量级的ETL工具提供了正式的框架来创建、调度和维护你的ETL处理。像SyncSort这样的产品能够处理更大的负载,也就是说排序,集成,转换和聚集不能被轻量级的工具及时处理时,很容易的想到用使用SyncSort。公司购买SyncSort去提高功能齐全的ETL产品性能,这种事情是不常见的。在作出决定选择最终的ETL产品前,应该考虑这些种类产品的组合。

Teradata 和 Microsoft的组合

大多数的商业智能项目规划者从来不考虑Teradata的组合,来自于NCR的数据仓库部分和微软的Microsoft Analysis Services。但是事实上,并不是简单的做体系组合方面的工作。对于某些商业智能应用来说它可能是最有效的方法。在早些时候我提到过Teradata 和 Microsoft Analysis Services,这里我愿意将讨论焦点集中在数据挖掘和高级分析上。

对于Teradata的用户,不管他们是否想要高性能的预测工具或者简单有效的展现工具,我都对 Teradata Warehouse Miner (TWM)的评价很高. 它的所有的数据挖掘功能都能在Teradata 数据仓库里或者任何你想执行sql的地方运行。这个特性可以节省大量的资金,因为它能发掘公司已经投资的Teradata 数据仓库平台的价值。如果你想实现TWM,我推荐你建立一个基于windows的平台,不仅是为了TWM客户端技术,而且是为了建立活跃数据仓库(living data warehouse)。一个活跃的数据仓库是一个已经创建的系统,并且它作为主数据仓库的分层的简单统计样本来维护,并且它是定期刷新的。

仔细考虑这个建议。你的店铺有一个巨大的Teradata数据仓库运行在NCR的服务器上:一项能高效的管理巨大数据集的投资。现在你的公司有一个小的但是精确的活跃数据仓库(living data warehouse),它描述一个大的数据仓库里的数据,是在windows平台上运行的Teradata数据库。它就像一个迷你型的数据仓库,关键利用了windows版本的Teradata 数据库,而不是TWM.这种非传统的组合扩大了整个的报告、挖掘和分析应用的机会,而且不用继续投资 。你可以有效的利用活跃数据仓库达到下面的目的:

1.       建立挖掘模型

2.       当样本充分时运行挖掘应用程序

3.       开发和测试依赖Teradata数据仓库的sql 报表

4.       建立依赖Teradata数据仓库的原型

使用 Web Services

对许多公司来说,商业智能的需求比可用的预算或者处理的能力都要大的多。Web services是一个有前途的解决方法,能让商业智能满足需求而且不用在商业智能技术本身投资。Web services依赖简单对象访问协议(SOAP)。SOAP使得Web service通信标准化,允许不同语言编写的程序、不同操作系统平台的客户端访问服务提供者的Web service。SOAP是标准的web协议,包括xml,http,tcp/ip。Web services 让不同的应用能够在一起工作,在异构环境中松散的耦合,共享分析服务和数据。比如地理空间的分析。你的顾客的地理位置是与你的网站密切相关的,你可以租用交易位置的分析服务。通过测量顾客和你本地的距离,你可以得到一个精确的地理概念,知道你的大部分顾客住在哪里。结合同一个地区的统计数据将给让你能够预测费用。如果你评估网站,出售地区经销权,租赁谈判,或者开展邮递活动,那么这个信息是非常重要的。

购买打包的地理空间解决方案和相关的统计数据,可能花费从几百美元到几千美元不等。利用Web services,你可以简单的发送你商店和顾客的地址到服务提供者,比如ESRI,然后返回两个交易地区的地图和尽可能小的花费的报告。整合由始至终的专门的分析和数据,Web services也是一个理想的途径,不用购买大量的数据和工具。尤其对地理空间分析是很明显的,空间数据,交易和其他的位置数据几乎就像日用品,你都可以通过Web services来访问,Web services负责保持数据的实时性,定期的更新。这样做的结果是节省了时间和昂贵的开销,而且有更多的附加收益,也就是始终保持最新的内容。Web services允许你按照交易数或者按照预先确定的交易量打折优惠来付费。你支付所使用的必要投资,避免了保持最新技术和人力成本的沉重负担。如果你想从你的商业智能投资中获得更大的价值,请考虑一下Web services带来的令人满意的专门的分析服务。

数据库的内置功能

销售商从几个数据源进行笨拙的修补一直是传统的商业智能实施途径。理由很简单:数据库厂商以前提供了很少的商业智能功能。因此,许多商业智能应用程序使用sql语法从数据库中抽取大批数据,放在应用层,然后转换数据到需要的粒度,然后商业智能应用程序再做其他的事情。现在传统的方法已经没有必要延续了,只是因为现在大多数的项目规划者已经习惯了它的模式。如今的主要关系数据库厂商,包括IBM、racle、 Microsoft 和 NCR/Teradata的数据库都内置了商业智能的功能。目前正在数据库内置商业智能功能的路上稳步的前进,包括数据挖掘,OLAP, ETL,空间地理分析,和回归,方差,取样,队列等高级统计分析功能。发掘你的关系型数据库中内在的商业智能功能是非常重要的:

1.       能让数据库发送精确的数据到商业智能应用程序

2.       将扫描,排序,连接和聚集的数据传到数据仓库服务器

3.       减少了网络传输的数据总量

4.       在防火墙外的较小的安全区域里暴露更少的数据

5.       降低了数据不一致的风险

数据库内置的商业智能功能不仅满足了整个企业级的真实的单一版本,不必关心最终用户的工具和应用程序,而且降低了开支。你不必再建立基础设施(cpu,存储器,网络带宽,和软件)来支持传统的商业智能模式。取而代之,数据库自己就可以准备优化的和精确的数据。

关注你所需要的

作为解决方案的战略家和数据架构师,我经常要在公司的已有技术,可用预算和新的需求之间保持平衡,我的超过半数的客户倾向于投资功能强大的,知名品牌的产品。很不幸,他们只是用到了这些产品功能的一小部分,这是一项昂贵没有意义的投资。而其他的客户,对价格非常敏感。他们试图实施最小投资的技术,但是后来发现这个方法需要很大的工作量,最后导致更大的投资。在实现商业智能应用的过程中,当你重新组合工具时需要进行权衡,能够使用他们的特性并且填补它们各自的缺陷。当预算比较紧张的时候,追加的工具需要价格低廉。重新组合并且权衡商业智能环境的经验,让我总是检查三个关键的架构方法:非传统的技术组合,使用Web services,扩展数据库内置的商业智能功能。当然还有其它的方法可以节省商业智能的预算,但是首先要调查那些方法,确定能够减少投资同时能够提供健壮的商业智能解决方案才能实行。

0 0

相关博文

我的热门文章

img
取 消
img