CSDN博客

img zdg
博客专家

美数学爱好者发现已知最大素数 共七百万位

发表于2004/6/2 18:37:00  8363人阅读

分类: 数学

  新华网伦敦6月1日电 (记者 曹丽君) 美国一位数学爱好者近日发现了已知最大的素数。这个素数共有7百万位,可写成2的24036583次方减1。这是人类发现的第41个梅森素数。

  据《新科学家》杂志网站1日报道,这位名叫约翰·芬德力的数学爱好者五年前用自己的家用台式电脑加入了“因特网梅森素数大搜索”(GIMPS)活动,他也是用这台普通的台式机偶然间发现这个素数的。在5月30日正式向外界公布这一消息之前,他还花费了两周的时间进行验证。而另外两位身在法国和加拿大的“因特网梅森素数大搜索”活动的志愿者也证实了芬德力的发现。而就在半年前,美国的一位学生曾发现第40个梅森素数,它共有6320430位数。

  素数也叫质数,是只能被自己和1整除的数,例如2、3、5、7、11等。2500年前,希腊数学家欧几里德证明了素数是无限的,并提出少量素数可写成“2的n次方减1”的形式,这里n也是一个素数。此后许多数学家曾对这种素数进行研究,17世纪的法国教士马丁·梅森(Mersenne)是其中成果较为卓著的一位,因此后人将“2的n次方减1”形式的素数称为梅森素数。

  1995年,美国程序设计师乔治·沃特曼整理有关梅森素数的资料,编制了一个梅森素数计算程序,并将其放置在因特网上供数学爱好者使用,这就是“因特网梅森素数大搜索”计划。目前有6万多名志愿者、超过20万台计算机参与这项计划。该计划采取分布式计算方式,利用大量普通计算机的闲置时间,获得相当于超级计算机的运算能力,第37、38和39个梅森素数都是用这种方法找到的。美国一家基金会还专门设立了10万美元的奖金,鼓励第一个找到超过千万位素数的人。

趣闻:
  梅森数的因子有时非常难找,美国数学家科尔在1903年10月的一次学术会议上走上讲台,在黑板上计算了2^67-1,接着,他又把193707721和761838257287两个数用直式相乘,两次计算结果完全相同。他一句话都没有说,就回到了自己的座位上,全场顿时以暴风雨般的掌声向他表示祝贺。这个"不说话的报告"已经成为数学史上的佳话。

前40个Mersenne:

# p digits year discoverer (reference)
1 2 1 antiquity  
2 3 1 antiquity  
3 5 2 antiquity  
4 7 3 antiquity  
5 13 4 1461 Reguis 1536, Cataldi 1603
6 17 6 1588 Cataldi 1603
7 19 6 1588 Cataldi 1603
8 31 10 1750 Euler 1772
9 61 19 1883 Pervouchine 1883, Seelhoff 1886
10 89 27 1911 Powers 1911
11 107 33 1913 Powers 1914
12 127 39 1876 Lucas 1876
13 521 157 1952 Lehmer 1952-3, Robinson 1952
14 607 183 1952 Lehmer 1952-3, Robinson 1952
15 1279 386 1952 Lehmer 1952-3, Robinson 1952
16 2203 664 1952 Lehmer 1952-3, Robinson 1952
17 2281 687 1952 Lehmer 1952-3, Robinson 1952
18 3217 969 1957 Riesel 1957
19 4253 1281 1961 Hurwitz 1961
20 4423 1332 1961 Hurwitz 1961
21 9689 2917 1963 Gillies 1964
22 9941 2993 1963 Gillies 1964
23 11213 3376 1963 Gillies 1964
24 19937 6002 1971 Tuckerman 1971
25 21701 6533 1978 Noll and Nickel 1980
26 23209 6987 1979 Noll 1980
27 44497 13395 1979 Nelson and Slowinski 1979
28 86243 25962 1982 Slowinski 1982
29 110503 33265 1988 Colquitt and Welsh 1991
30 132049 39751 1983 Slowinski 1988
31 216091 65050 1985 Slowinski 1989
32 756839 227832 1992 Gage and Slowinski 1992
33 859433 258716 1994 Gage and Slowinski 1994
34 1257787 378632 1996 Slowinski and Gage
35 1398269 420921 1996 Armengaud, Woltman, et al.
36 2976221 895832 1997 Spence, Woltman, GIMPS (Devlin 1997)
37 3021377 909526 1998 Clarkson, Woltman, Kurowski, GIMPS
38 6972593 2098960 1999 Hajratwala, Woltman, Kurowski, GIMPS
39? 13466917 4053946 2001 Cameron, Woltman, GIMPS (Whitehouse 2001, Weisstein 2001ab)
40? 20996011 6320430 2003 Shafer, GIMPS (Weisstein 2003ab)

美国Illinois发行的邮票:

 

相关连接:
 GIMPS Home Pagehttp://www.mersenne.org/
  This page contains a description of the GIMPS Project. Also offered is a description of Mersenne numbers and some related links.GIMPS, the Great Internet Mersenne Prime Search, was formed in January 1996 to discover new world-record-size Mersenne primes.
 GIMPS中文http://www.equn.com/gimps/
 The Prime Pageshttp://www.utm.edu/research/primes/

0 0

我的热门文章

相关博文

img
取 消
img即使是一小步
也想与你分享
打开
img