CSDN博客

img zhaoyang17

BI在零售业中的应用

发表于2004/10/3 18:24:00  1030人阅读

分类: 02 CRM

  BI在零售业中的应用

  在国外,BI分析系统作为经营和竞争的有效工具在零售业中的应用已颇为成熟
,正在倚仗这一科学而有效的手段,国外的零售巨头们在全球范围内拥有越来越大的
经营优势。使用BI分析系统,能跟好的利用BI(Business Intelligent)即商业智能
的功能来分析零售经营的各种数据,透析零售业经营中的内在规律,使企业的经营管
理真正上档次、上台阶。

  一、分析危机

  企业在经营过程中会产生海量的信息,这些信息蕴藏了丰富的经营技巧和市场
规律,怎样有效利用这些宝贵的信息,使之为企业经营服务,成为零售企业的一个迫
切愿望和现实难点.普通的零售业信息智能够提供一般的分析数据,不能提供立体化
的、多视角的、有渗透力的数据,更不能提供更多潜在的、预测型的经营建议。
BI系统恰恰弥补了一般零售业信息系统在分析商的先天不足。
  管理者对数据的分析行为,通常都会从不同的角度出发来获得不同的信息。比
如在作销售分析时,最常见的分析数据摄取一般是这样的:在某一特定时间区间内
,搜集某些特定经营单元(如分店)的主要经营指标(如销售额、成本、进项税、
毛利、毛利率、坪效、交叉比、销进比等)的单个及合计数据,据此进行分析。
  但是经营者往往会提供出更多、更细的数据要求。如提供上述数据指标是要求
考虑到时间区间内时间点的细分(如细分到每日或每时),并且顾及到单个分店,
同时包含商品细分类别(如按大、中、小来分类,甚至分道单品)等因素。这说明
,随着市场竞争的日益激烈,经营者的工作已不是仅仅局限在粗放的数据审阅上,
而是需要越来越精细的数据分析,而且这些分析业不仅仅局限于单点单向,而是要
多点多向地进行。
由于经营者在分析时会根据不同情况的要求和不同思路分析的灵感,从不同的观察
角度,对数据的摄取提出以不同的对象为中心、有时甚至是跳跃式的、跨数据性质
、类别的摄取要求,这些数据要求如在一般的分析系统中摄取,不仅搜集整理的工
作量巨大,而且分析运用起来也十分不便,有的甚至无法融合在一起,这时就需要
BI分析系统的帮助了。在BI中把这些不同的观察角度或分析对象不同类别的属性叫
做"维"(如日期维、地方维、类别维等),而这个"维"又是分级的,比如日期可分
为年、月、周、日;地方可分为公司、分店、部门和柜组;类别也可分为大类、中
类、小类、细类、系列等。如果在分析中需要对类似以上的这些数据进行采摘、处
理,再加上通常分析工作都会用到的同比、环比等指标的处理,一般的数据分析系
统显然已经力不从心了。
  这就是笔者要讲的分析危机:老总们越来越爱分析,而IT部门越来越不能胜任
分析!那么在运用BI之后呢?一切将完全改变过来。BI分析系统通过连续、立体的
动态表来展现各种数据,并且对这些数据进行组合、聚类、排序等处理,给经营管
理者带来一种得心应手得分析新感觉。

  二、神秘的BI

  BI是一种运用数据仓库技术来处理和分析数据的崭新分析工具,其工作原理主
要是通过对数据进行抽取、清洗、聚类、挖掘、预测等处理来产生可透析的各种展
示数据。这些数据可直观显示分析者索要探询的某种经营属性或市场规律。
  BI除了通过动态表展现数据外,还可通过丰富多彩的图形去展现,并且能对图
形去展现,并且能对图形做拉伸、分块、旋转、透视等多种处理,以更直观可见的
方式来展现数据规律。同时还可对数据做各种标识。如特别好的销售数据勇绿色表
示,特别差的销售数据用红色表示。另外,还可对数据进行跟踪分析。
BI还有一个很优秀的功能就是设定一个边界条件进行挖掘工作,从杂乱无章的数据
中找出内在的联系,沃尔玛著名的啤酒与尿布的故事就是这样产生的。
  BI分析系统的主要代表功能有:综合分析预告警、趋势分析等。它不仅适用于
零售业,同时在金融、保险等行业得到了广泛应用。

  三、决胜未来

  在国外,BI在零售业已有较好的应用,并产生了相关的指标体系理论;在国内,
BI的运用还处于初级阶段,但其本身所具有的灵活性和强大性,使得它在零售业界
迅速度崛起,呈现出高速上升的趋势。
  BI最常见的应用就是辅助建立信息中心,产生各种工作报表和分析报表。常见
的分析有:
  销售分析 主要用于分析各项销售指标(如毛利、毛利率、坪效、交叉比、进
销比、盈利能力、周转率、同比、环比等等),可从管理架构、类别、品牌、日期
、时段等分析维角度来观察,这些分析维又可采用多级钻取,从而获得相当透彻的
分析思路;同时,根据海量数据产生预测信息、告警信息等分析数据;还可根据各
种销售指标产生新的透视表(如最常见的ABC分类表、商品敏感分类表、商品盈利
分类表等)。
这些复杂的指标在普通的信息数据库中是难以实现的,老总们虽然知道它们好,但
得不到,使得这些指标显得若有若无。直到BI技术出现之后,这些指标材重新得到
了管理者和分析者的宠幸。
  商品分析 商品分析的主要数据来自销售数据和商品基础数据。据此产生以分
析结构为主线的分析思路。主要的分析数据有:商品的类别结构、品牌结构、价格
结构、毛利结构、结算方式结构、产地结构等,从对这些数据的分析中产生商品广
度、商品深度、商品淘汰率、商品引进率、商品置换率、重点商品、畅销商品、滞
销商品、季节商品等多种指标,通过对这些指标的分析来指导企业调整商品结构,
加强商品的竞争能力和合理配置。
  顾客分析 顾客分析主要是指对顾客群体的购买行为的分析。例如可将古可分
成"富人"和"穷人"。那么什么人是"富人",什么人是"穷人"呢?如果企业有会员卡
,可以通过会员登记的月收入来区分;但如果没有会员卡呢?这是可以通过小票的
每单金额来假设。比如每单金额大于100元的顾客,我们认为是"富人";每单金额
小于100元的顾客,我们认为是"穷人"。据此,又可以派生出很多其他分析思路。
如"富人"喜欢什么样的商品,"穷人"喜欢什么样的商品,"富人"购买的时间和"穷
人"购买的时间;本企业的商圈里是"富人"多还是"穷人"多;"富人"给商场做出的
贡献大还是"穷人"做出的贡献大;"富人"喜欢用什么来支付,"穷人"喜欢用什么方
式来支付等等。此外,还有商圈的客单量分析、商圈里的购物高峰分析、假日经济
对企业的影响分析等等分析思路。
  供应商分析 通过对供应商在选定的时间段内的各项指标(订货量、订货额、
进货量、进货额、到货时间、库存量、库存额、退换量、退换额、销售量、销售额
、所供商品毛利率、周转率、交叉比率等)进行分析,为供应商的引进、储备及淘
汰(或淘汰气部分品种)和供应商库存商品的处理提供依据。主要分析的主题有供
应商的组成结构、供应商的送货情况、供应商所供商品的情况(比如销售贡献、利
润贡献等)、供应商的结算情况等。比如我们发现,有些供应商所提供的商品销售
一直不错,从而他在某个时间段里的结款非常稳定,而这个供应商的结算方式是代
销,那么如果资金不紧张,而这个供应商所供商品的销售风险又不大,为什么不考
虑将其改为购销呢?--这样可以降低成本呵。
  人员分析 通过对公司的人员指标进行分析,特别是对销售人员指标(着重销
售指标,毛利指标为辅)和采购员指标(销售额、毛利、供应商更换、购销商品数
、代销商品数、资金占用、资金周转等)的分析,达到考核员工业绩、提高员工积
极性、为人力资源的合理利用提供科学依据的目的。主要分析主题有员工的人员构
成情况、销售人员的人均销售情况、开单销售的个人的销售业绩情况、各管理架构
的人均销售情况、毛利贡献情况、采购员分管商品的进货情况、购销代销比例情况
、引进的商品销售情况如何等等。

  BI对零售业的分析远不止以上所述,至少还有资金运转分析、库存分析和结算
分析等等。这些分析在实际经营中有着重要的利用价值,谁能对自己的经营做出正
确的分析,谁就能及时修正自己的经营方针和政策,谁就将赢得未来!

摘自《商场现代化》2001年8月刊 作者:邱克

阅读全文
0 0

相关文章推荐

img
取 消
img