一、RAG技术概述
RAG(Retrieval-Augmented Generation,检索增强生成)是解决大模型知识幻觉和知识滞后问题的革命性技术。它通过将检索系统与大语言模型(LLM)结合,使模型能动态调用外部知识库生成更准确的回答,成为企业构建智能问答、知识管理系统的核心方案。
技术价值
-
突破模型知识边界:传统LLM依赖训练数据,无法获取最新知识或私有领域信息。
-
降低开发门槛:无需微调即可让通用大模型适配垂直场景。
-
提升回答可信度:通过知识检索验证生成内容,减少虚构信息。
二、RAG核心原理
1. 技术架构
RAG采用"检索→增强→生成"三段式架构:
-
知识库构建:文档分块→向量化→存储(如Milvus/FAISS)。
-
语义检索:用户问题向量化→相似度匹配→Top-K结果召回。
-
增强生成:检索结果与问题拼接→提示词工程→LLM生成答案。
2. 关键技术模块
模块 | 技术要点 | 典型工具链 |
---|---|---|
文档处理 | 文本分块、元数据标注 | LangChain RecursiveSplitter |
向量化 | Embedding模型选择与优化 | BGE、Sentence-Transformers |
向量数据库 | 高维向量存储与检索 | Chroma、Milvus、PGVector |
检索策略 | 混合搜索/MMR多样性优化 | FAISS HNSW索引 |
提示工程 | 上下文拼接与指令控制 | CoT、Few-shot模板 |
三、RAG开发实战
1. 基础开发框架
-
LangChain:提供文档加载、分块、检索链的完整开发套件,支持快速搭建原型。
-
Spring AI:Java生态的RAG实现方案,整合Milvus与国产大模型。
-
GraphRAG:微软提出的知识图谱增强方案,解决传统RAG局部性问题。
2. 典型开发流程(以LangChain为例)
3. 性能优化策略
-
分块策略:动态调整chunk_size(推荐500-1000字符),采用父-子块级联存储。
-
混合检索:结合语义搜索与关键词匹配提升召回率。
-
重排序机制:使用LLM对初筛结果进行相关性打分。
-
硬件加速:鲲鹏RAG一体机通过NPU加速实现亿级向量50ms检索。
四、行业应用场景
1. 企业知识管理
-
智能客服:福州大学附属医院基于DeepSeek+RAG构建医疗问答系统,诊断建议准确率提升45%。
-
文档检索:钉钉AI一体机实现企业知识秒级召回,部署效率提升2倍。
2. 内容生成
-
新闻创作:结合实时资讯库生成时效性报道。
-
代码辅助:Stack Overflow集成RAG提供上下文感知的编程建议。
3. 决策支持
-
金融风控:检索历史交易数据生成风险评估报告。
-
法律咨询:匹配相似案例生成法律意见书。
五、挑战与前沿突破
1. 现存问题
-
分块质量依赖:过度拆分导致语义碎片化。
-
多跳推理局限:复杂问题需跨文档关联检索。
-
多模态支持不足:当前以文本为主,图像/视频检索能力待提升。
2. 创新解决方案
-
GraphRAG:构建文档知识图谱,实现全局语义理解。
-
多模态RAG:CLIP模型实现图文跨模态检索(如SD文生图)。
-
流式更新:腾讯云向量数据库支持实时索引更新,知识延迟降至分钟级。
六、未来发展趋势
-
工具链标准化:LangChain/Spring AI等框架将形成统一开发范式。
-
硬件一体化:鲲鹏RAG一体机推动企业级方案开箱即用。
-
多模态扩展:支持音频、视频、3D模型等新型知识载体。
-
认知增强:结合Agent技术实现自主知识发现与推理。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型视频教程
对于很多自学或者没有基础的同学来说,这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
3. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~